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High-Dimensional Bounds: A Case for Probability Theory

Often in high dimensions, bounds can be improved by looking at
the expectation. From “Probability in High Dimensions” by
Ramon van Handel pg. 129:

I Estimate via direct methods:

|Xf − Xg | ≤ 2||f − g ||∞, a.s. (1)

I Estimate of the expectation:

E|Xf − Xg | ≤ n−1/2||f − g ||∞ (2)

Takeaway: Bounds that depend on expectation can sometimes be
asymptotically tighter in high dimensions! (Same thing is true in
Lp spaces)
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Dimension Reduction

Think of the classification problem:

Goal: reduce dimension and keep data “fidelity”
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Goals
I Separating hyperplane theorem requires the notion of

orthogonality
I Want the notion of distance to be the same, so we can

quantify error of fitted model as in ambient space
I Would like to apply dimension reduction randomly
I Have the reduction only depend somehow on the ambient

dimension n and the number of sampled points N
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Isometry

Suppose you have two metric spaces, X ,Y with metrics dX and
dY , respectively and you have a mapping T : X → Y between
them. An isometry is the most ideal way of comparing the two
spaces, if such a mapping is possible. An isometry guarantees:

I Unique points in X are mapped to unique points in Y, i.e.
this is an isomorphic mapping

I The “size” of vectors is the same:

dX (x1, x2) = dY(y1, y2) (3)

for x1, x2 ∈ X and y1, y2 ∈ Y.

I Vectors that are orthogonal in X are orthogonal in Y, i.e.
angles have the same meaning in both metric spaces.
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Johnson-Lindenstrauss Lemma
Let X be a set of N points in Rn and ε > 0. Assume that

m ≥ (C/ε2) logN (4)

Consider a random m-dimensional subspace E in Rn uniformly
distributed in Gn,m. Denote the orthogonal projection onto E by
P. then, with probability at least 1− 2exp(−cε2m), the scaled
projection:

Q :=

√
n

m
P (5)

is an approximate isometry on X :

(1− ε)||x − y ||2 ≤ ||Qx − Qy ||2 ≤ (1 + ε)||x − y ||2 (6)

for all x , y ∈ X .
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The Continuous Case: What is going on geometrically?
I Concentration of area on spheres in high dimension
{x : ||x ||2 = 1}. Most of the mass is located around every
“equator”.

I What about cubes in high dimensions {x : ||x ||∞ = 1}? Most
of the volume is located near the vertices (many vertices).

I What about {x : ||x ||1 = 1}? This object appears much
smaller than it actually is in high-dimensions (very little mass
concentrates about the vertices). Very spiky.
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Spherical Width (Mean Width)

The spherical width of a subset T ⊂ Rn is
defined as:

ws(T ) := E sup
x∈T
〈θ, x〉 (7)

where θ ∼ Unif(Sn−1).

ws(Bn
1 ) ∼

√
log n

n
(8)
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Size of Random Projections

Consider a bounded set T ⊂ Rn. Let P be a projection in Rn onto
a random m-dimensional subspace E ∼ Unif(Gn,m). Then, with
probability at least 1− 2e−m, we have:

diam(PT ) ≤ C

(
ws(T ) +

√
m

n
diam(T )

)
(9)

or, equivalently,

diam(PT ) ≤ C max

(
ws(T ),

√
m

n
diam(T )

)
(10)

which represents a kind of “phase transition”. We see that the
mean width governs the diameter of random projections in
high-dimensions and this happens at the “effective” dimension

d(T ) ∼ nws(T )2

diam(T )2
∼ w(T )2

diam(T )2
.
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Using Gaussian Processes to Learn about Geometry

In geometry, one can “study” the topology of a manifold by:

I Find the eigenvalues of the Laplace-Beltrami operator

I Define certain smooth functions (Morse theory) on the
manifold and find their critical points

Can we learn something about the geometry here by using a
Markov process? Yes.

w(T ) := E sup
x∈T
〈g , x〉, where g ∼ N(0, In) (11)

Recall the “effective” dimension above is: d(T ) ∼ w(T )2

diam(T )2
.
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Discretization of Sets to Accuracy ε

Another Idea: Maybe we can learn something about “effective”
dimension by discretization parametrized by ε, and noting how the
complexity of the set changes as ε→ 0.

Specify the points in a set K in a metric space (T , d) to
accuracy ε in the metric d . Then, the number of bits by C,
can be bounded by a quantity called the metric entropy of
the set K :

log2N (K , d , ε) ≤ C ≤ log2N (K , d , ε/2) (12)



Beamer

ε-nets
I ε-net: Let (T , d) be a metric space. Consider a subset

K ⊂ T and let ε > 0. A subset N ⊂ K is called an ε-net of K
if every point in K is within a distance ε of some point of N

I Covering number: The smallest possible cardinality of an
ε-net of K is called the covering number of K and is denoted
by N (K , d , ε)
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Relation Between Metric Entropy and Stable Dimension

Theorem (Fernique)
Let {Xt}t∈T be a stationary separable Gaussian process.
Then, ∃c1, c2 s.t.:

c1

∫ ∞
0

√
logN (T , d , ε)dε ≤ E

[
sup
t∈T

Xt

]
≤

c2

∫ ∞
0

√
logN (T , d , ε)dε (13)

Conclusion: Another interpretation of “effective” dimension:

d(T ) ∼
(∫∞

0

√
logN

diam(T )

)2

(14)
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Questions?
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Some Useful Resources

I “High-Dimensional Probability” Vershynin, Roman.

I “Pattern Recognition and Machine Learning” Christopher M.
Bishop

I “Probability in High Dimensions” Ramon van Handel. APC
550 Lecture Notes Princeton University.
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Future Talks

Further potential topics:

I Adversarial attacks

I Data augmentation

I ???

Oct 23: TBD


