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High-Dimensional Bounds: A Case for Probability Theory

Often in high dimensions, bounds can be improved by looking at
the expectation. From “Probability in High Dimensions” by
Ramon van Handel pg. 129:

» Estimate via direct methods:

[Xr = Xl < 2||f — glloo, ass. (1)

» Estimate of the expectation:

E|Xr — Xg| < nH2[|f — glloo (2)

Takeaway: Bounds that depend on expectation can sometimes be
asymptotically tighter in high dimensions! (Same thing is true in
LP spaces)



Beamer

Dimension Reduction

Think of the classification problem:

Goal: reduce dimension and keep data “fidelity”
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Goals

» Separating hyperplane theorem requires the notion of
orthogonality

» Want the notion of distance to be the same, so we can
quantify error of fitted model as in ambient space

» Would like to apply dimension reduction randomly

» Have the reduction only depend somehow on the ambient
dimension n and the number of sampled points N
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Isometry

Suppose you have two metric spaces, X', ) with metrics dy and
dy, respectively and you have a mapping T : X — ) between
them. An isometry is the most ideal way of comparing the two
spaces, if such a mapping is possible. An isometry guarantees:

» Unique points in X’ are mapped to unique points in Y, i.e.
this is an isomorphic mapping
» The “size” of vectors is the same:

dx(x1, %) = dy(y1, y2) (3)
for x1,x0 € X and y1,y» € V.

» Vectors that are orthogonal in X are orthogonal in ), i.e.
angles have the same meaning in both metric spaces.
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Johnson-Lindenstrauss Lemma
Let X be a set of N points in R” and € > 0. Assume that

m > (C/e®)log N (4)

Consider a random m-dimensional subspace E in R” uniformly
distributed in G, . Denote the orthogonal projection onto E by
P. then, with probability at least 1 — 2exp(—ce?m), the scaled

projection:
/'n
Q= —mP (5)

is an approximate isometry on X’

(I=9llx =yl <l[@x = Qyll2< (A +¢)llx—yll2  (6)
forall x,y € X.
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The Continuous Case: What is going on geometrically?

» Concentration of area on spheres in high dimension
{x :||x|]2 = 1}. Most of the mass is located around every
“equator”.

» What about cubes in high dimensions {x : ||x||oc = 1}? Most
of the volume is located near the vertices (many vertices).

» What about {x : ||x||1 = 1}? This object appears much
smaller than it actually is in high-dimensions (very little mass
concentrates about the vertices). Very spiky.
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Spherical Width (Mean Width)

The spherical width of a subset T C R" is
defined as:

ws(T) :=Esup(f, x) (7)
xeT

where 0 ~ Unif(S"‘l).

log n
n

ws(Br) ~ (8)

"width" in direction f
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Size of Random Projections

Consider a bounded set T C R”. Let P be a projection in R” onto
a random m-dimensional subspace E ~ Unif(Gp, ). Then, with
probability at least 1 — 2e™"™, we have:

diam(PT) < C (WS(T) + \/Tdiam(T)) (9)

or, equivalently,

diam(PT) < C max <WS(T), ﬁdiam(T)) (10)

which represents a kind of “phase transition”. We see that the
mean width governs the diameter of random projections in

high-dimensions and this happens at the “effective” dimension

nws(T)2 w(T)?
d(T) ~ diam((T))2 ~ diarsw(')F)Q'
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Using Gaussian Processes to Learn about Geometry

In geometry, one can “study” the topology of a manifold by:

» Find the eigenvalues of the Laplace-Beltrami operator

» Define certain smooth functions (Morse theory) on the
manifold and find their critical points

Can we learn something about the geometry here by using a
Markov process? Yes.

w(T):=E sug(g,x}, where g ~ N(0, /,) (11)
IS
w(T)?

Recall the “effective” dimension above is: d(T) ~ Fam(T7"
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Discretization of Sets to Accuracy ¢

Another Idea: Maybe we can learn something about “effective”
dimension by discretization parametrized by €, and noting how the
complexity of the set changes as ¢ — 0.

Specify the points in a set K in a metric space (T,d) to
accuracy € in the metric d. Then, the number of bits by C,
can be bounded by a quantity called the metric entropy of
the set K:

logo N(K, d,€) <C < log, N(K,d,e/2)  (12)




Beamer

e-nets

» e-net: Let (T,d) be a metric space. Consider a subset
K C T and let € > 0. A subset N/ C K is called an e-net of K
if every point in K is within a distance € of some point of N
» Covering number: The smallest possible cardinality of an

e-net of K is called the covering number of K and is denoted
by N(K,d,e)
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Relation Between Metric Entropy and Stable Dimension

Theorem (Fernique)
Let {X:}tcT be a stationary separable Gaussian process.
Then, ¢y, ¢ s.t.:

cl/ V9og N (T,d,e)de <E [supXt] <
0 teT

o /OOO JIog N(T. d,)de (13)

Conclusion: Another interpretation of “effective” dimension:

d(T) ~ <f€j|amlg)$_) ) (14)
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Questions?
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Some Useful Resources

» “High-Dimensional Probability” Vershynin, Roman.

» “Pattern Recognition and Machine Learning” Christopher M.
Bishop

» "“Probability in High Dimensions” Ramon van Handel. APC
550 Lecture Notes Princeton University.
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Future Talks

Further potential topics:
> Adversarial attacks

» Data augmentation
> 777

Oct 23:

TBD




